
End Suction Chemical Process Pumps

NME SERIES

MDKBK032024

EC DECLARATION OF CONFORMITY

AT UYGUNLUK BEYANI

Manufacturer / İmalatcı : MAS DAF MAKİNA SANAYİ A.S.

Address / Adres : Orta Mah. Atavolu Cad. No: 16 Tuzla - İSTANBUL / TÜRKİYE

Organize Sanayi Bölgesi, Beyköy Beldesi, İstiklal OSB 1 Mah. 5. Cad. Dış Kapı No:7

Name and address of the person authorised to Vahdettin YIRTMAC

compile the technical file

Teknik Dosyayı Derleyen Yetkili Kişi ve Adresi

Orta Mah. Atavolu Cad. No: 16

Tuzla - İSTANBUL / TÜRKİYE

The undersigned Company certifies under its sole responsibility that the item of equipment specified below satisfies the requirements of the mainly Machinery Directive 2006/42/EC which is apply to it.

The item of equipment identified below has been subject to internal manufacturing checks with monitoring of the final assessment by MAS DAF MAKINA SANAYI A.S.

. Aşağıda tanımlanmış olan ürünler için Makine Emniyeti yönetmeliği 2006 / 42 / AT' nin uygulanabilen gerekliliklerinin yerine getirildiğini ve sorumluluğun alınmış olunduğunu bevan ederiz.

Aşağıda tanımlanan ürünler iç üretim kontrollerine bağlı olarak MAS DAF MAKİNA SANAYİ A.S. tarafından kontrol edilmistir.

Equipment / Ürün : End Suction Chemical Process Pump

Uctan Emisli Kimvasal Proses Pompası

Seri / Model-Tip : NME Series / NME Serisi

For pumps supplied with drivers/ Elektrikli Pompa Üniteleri

Related Directives / Yönetmelikler

2006/42/EC Machinery Directive / 2006/42/AT Makine Emniveti Yönetmeliği

2014/35/EU Low Voltage Directive / 2014/35/AB Alçak Gerilim Yönetmeliği

2014/30/EU Electromagnetic Compatibility Directive / 2014/30/AB Elektromanyetik Uyumluluk Yönetmeliği EUP 2009/ 125 /EC Electric Used Products Directive/ Elektrik Kullanan Ekipmanlar Direktifi (EUP)

94/9/EC Equipment For Explosive Atmospheres / Patlayıcı Ortamlardaki Ekipman Yönetmeliği

Regulations applied acc. to harmonize standards / Uygulanan Uyumlaştırılmış Standartlar TS EN ISO 12100:2010, TS EN 809+A1, TS EN 60204-1:2018.

We hereby declare that this equipment is intended to be incorporated into, or assembled with other machinery to constitute relevant machinery to comply with essential health and safety requirements of Directive The machinery covered by this declaration must not be put into service until the relevant machinery into which it is tobe incorporated has been declared in conformity with provisions of the directive.

Ekipman, uygun bir makina oluşturmak amacıyla diğer ekipmanlar ile birleştirilirken ya da monte edilirken gerekli sağlık ve güvenlik yönetmeliklerine uyulması gerekmektedir.

Bu bildiri kapsamında yönetmelikte belirtilen bütün hükümler yerine getirilmeden makinanın devreye alınmaması gerekmektedir.

Place and date of issue / Yer ve Tarih

Name and position of authorized person Yetkili Kişinin Adı ve Görevi

Signature of authorized person

Yetkili Kişinin İmzası

: İstanbul, 01.08, 2019

: Vahdettin YIRTMAC

General Manager / Genel Müdür

INDEX	Page No

Cont	ents	
1. İm	portant Sefety Precautions	7
2. Ge	neral	7
	2.1. Definition of Pump and Usage Areas	7
	2.2. Performance Information	8
	2.3. Warranty Conditions	8
	2.4. Test	8
	2.5. Basınç Limiti	8
	2.6. ATEX Description	8
3. Sa	fe Operating Conditions	9
	3.1. Training of Personnel	9
	3.2. Hazardous Conditions That May Occur	
	When One does not Comply With the Safety Instructions	10
	3.3. Safety Measures for Operator	10
	3.4. Safety Measures for Maintenance and Installation	10
	3.5. Informations about Protection against Explosion	10
	3.6. Spare Parts Replacement	10
4. Te	chnical Information	11
	4.1. Design	11
	4.2. Construction of Pump Group	12
5. Tra	ansport and Storage	12
	5.1. Transport	12
	5.2. Storage	13
6. As	sembly / Installation	13
	6.1. Installation	13
	6.2. Type of Connection	13
	6.3. Foundation	13
	6.4. Coupling Alignment	14
	6.5. Piping	17
	6.6. Specification of Work after Installation of Piping and Piping System	18
	6.7. Motor Connection	18

7. Commissioning, Start up and Operating	19
7.1. Preparations Before Start Up	19
7.2. Checking The Direction of Rotation	20
7.3. Start up Procedure	20
7.4. Down Shut Procedure	20
8. Maintenance	21
8.1. The Checks During the Operation	21
8.2. Maintenance Instructions in ATEX Version Pumps	22
8.3. Service	23
8.4. Spare Parts	23
9. Noise Level and Vibration	23
9.1. Expected Noise Values	23
10. Disassembly, Repairand Reassembly	24
10.1. Disassembly	24
10.2.Reassembly	25
10.3.Coupling Guard Assembly	26
11. Mechanical Seal Informations	27
11.1. Safety Instructions	27
11.2. Mechanical Seal Working Conditions	27
11.3. General Instructions	27
11.4. Assembly	27
11.5. After Starting-Up	28
11.6. Disassembly	28
11.7. Storage and Transport	28
11.8. Maintenance	28
12. Possible Failures, Causes, Solotions	29
13. Tightening Torques	30
14. Forces and Moments at the Pump Flanges	30
15. Sample Plumbing	32
16. NME Sectional Drawing and Parts List	33
17. Base Plate Details	35
18. Mechanical Seal Applications	36
19. NME Drawing for Dismantling	39

INTRODUCTION

- This manual contains instructions for the installation, operation and maintenance of DAF, DAFLite, MultiDAF, SuperDAF, MiniDAF, DSP type booster pumps or booster sets of **MAS DAF MAKINA SANAYI** A.Ş.
- Please read carefully this manual and apply all the instructions to operate pumps without problems.
 Pumps shall be used for their intended duties. In this manual, there are information on operating conditions, installation, starting-up, settings and main controls of pumps.
- These operating and maintenance instructions contain MAS DAF MAKINA SANAYI A.Ş.'s suggestions.
 The special operating and maintenance information of the plumbing that a pump is fitted to is not considered in these instructions. This information must be given by the plumbing constructors only.
- · Please refer to instructions of plumbing constructors.
- Please pay attention to the warnings in this manual and ensure that it is read before the installationstart up process. MAS DAF MAKINA SANAYI A.Ş. is not responsible for the accidents resulting from negligence.
- If you cannot find an answer to your questions in this manual, it is suggested that you contact MAS
 DAF MAKINA SANAYI A.Ş. Please inform us about the rated value and especially the serial number
 of the pumps or booster sets when you get in contact for help.
- The safety instructions in this manual cover the current national accident protection regulations.
 Beside all of these, an operation, work and safety measure imposed by the costumer has to be applied.

The Signs Used in This Operation Manual

<u>(i)</u>	Read the instructions carefully in this operating manual and keep it for your future reference.
4	Warning sign against the electrical risks.
į	Sign for the operator's safety.
⟨£x⟩	Sign for protecting against explosion.

1. IMPORTANT SAFETY PRECAUTIONS

In order to minimize the accidents during the mounting and putting into service of the pump, the following rules have to be applied:

- Do not work without taking safety measures relevant to equipment. Cable, mask and safety band must be used when necessary.
- 2. Be sure there is adequate amount of oxygen and there is no toxic gaseous around
- Before using welding or any electrical equipment make sure that there is no risk of explosion.
- 4. Check the cleanliness of the area to take care of your help. (Dust, smoke, etc.)
- Do keep in mind that there is a risk of having accidents related to electricity
- 6. Do not lift the pump before you check the transport equipment.
- 7. Be sure you have a by-pass line
- 8. Use helmet, eyeglasses and protective shoes for your safety
- 9. Place a protective barrier around the pump within the necessary safety area
- Dust, liquids and gaseous that may cause overheating, short circuit, corrosion and fire must be kept away from the pump unit.
- By checking the noise level of the pump unit, necessary measures to avoid noisyoperation of the pump that can have harmful effects on the personnel and environment.
- 12. Be careful about the direction of transport and storage.
- Cover appropriately the moving parts to avoid possible injury of the personnel. Mount the coupling guard and belting before starting-up the pump
- All the electrical and electronic applications must be performed by authorized person conforming EN60204-1 and/or domestic instructions.
- 15. Protect the electrical equipment and motor against overloading

- If flammable and explosive liquids are pumped, ground connection of electricity should be carried out properly
- 17. Do not expose the pump unit to sudden temperature variations
- All personnel who work with the wastewater system need to be vaccinated in case of contagious diseases.
- If the pump contains hazardous liquids, one must use protective helmet against the risk of splatter. One also must accumulate the liquid in a proper container against any risk of leakage.

All Other Health and Safety Rules, Laws and Regulations Must Be Applied.

2. GENERAL

2.1. Definition of Pump and Usage Areas

NME series pumps are single stage, end suction volute type pumps. They are used in:

- Chemical and petrochemical industries
- · Rafineries and filling facilities
- Iron and steel industries
- Paper and pulp industries
- · Food industries
- · Heating and cooling facilities
- Power stations
- Water treatment plants

NME series pumps shall be used to pressurize liquids which are clean or mildly impure, low viscosity, non-abrasive and not containing large solid particles or fiber.

CAUTION

Please contact MAS DAF MAKINA SANAYI A.Ş. for liquids that have different chemical and physical specifications.

Technical specifications of NME type pumps

Suction Flange:	DN 50-DN 300
Discharge Flange:	DN 32-DN 250

Operating Pressure: 16 bar.

Operating Temperature: -25 – 350 °C

Capacity Range: 5 -1800 m3/h

Casing Pressure (Maximum): 25 bar Head Range: 5-150 m

Speed: 1000-3000 rpm

2.2. Performance Information

Actual performance of the pump can be obtained from the order page and/or from the test report. This information is given on the pump label.

The performance curves given in the catalog are valid for water whose density and viscosity are P=1 kg/dm3and V=1 cst. respectively. For those liquids whose densities and viscosities are different from those of water, please consult with MAS DAF MA-KINA SANAYI A.S. since the performance curves vary with density and viscosity

CAUTION

Do not operate the pump with a motor that has a different power except for the given catalog and label values.

The pump is not to be operated at off-design point given in the order and supplied from the firm.

It is necessary to ensure that the instructions are obeyed for the safe running of the pump.

2.3. Warranty Conditions

Theentireproducts in ourselling program arewarrantedbyMAS DAF MAKINA SANAYİ A.Ş.

The warranty conditions will only be valid when all the instructions about installation and start-up operations of the pump unit are taken into account

2.4. Test

Pump performance values are valid under our factory test conditions.

2.5. Basınç Limiti

Pressure at the discharge flange must not be more than 1,5 times of pump head. A special order is necessary for applications with higher pressures.

Pressure and Temperature Limits	Pressure	Temperature
NME Series	16 Bar	350 °C

2.6. ATEX Description

The undersigned Company certifies under its sole responsibility that the item of equipment specified below satisfies the requirements of the ATEX Directive 94/9/EC which is apply to it.

Please read cautiously all instructions emphasized with ATEX sign in this manual.

ATEX Codification

ATEX-95

/D c Tx (85 oC – 200 oC)

Eq	Equipment Groups (Annex I of Directive 94/9/EC)						
Group 1 (Mines, mine gas and dust)		Group 2 (Other explosive atmosheres gas/dust)					
Category	Category	Cate	gory 1	Cate	gory 2	Cate	gory 3
,	,	G	D	G	D	G	D
M1	M2	(Gas)	(Dust)	(Gas)	(Dust)	(Gas)	(Dust)
For equipment providing a very high level of protection when endange- red by an explosive atmosphe-	For equipment providing a high level of protection when likely to be endangered by an explosive atmosphe-	For equipment providing a very high level of protection when used in areas where an explosive atmosphere is very likely to occur		provivery his of provivery his of provivery when areas an exatmos very l	uipment iding a gh level itection used in where plosive phere is ikely to	provi very hi of pro when areas an ex atmos very l	uipment iding a gh level itection used in where plosive phere is ikely to

Code	Description
II	The Usage in other non-mining explosive atmospheres
2	2. Category: High level of protection
G	For potentially explosive environments due to gases or vapors
Т	Temperature class
X	ATEX Marking of the motor manufacturer

Classification explosion group of electric motors is II B.

TEMPERATURE CLASS				
Temperature class required by the area classification	lgnition temperature of gas or vapor	Allowable temperatre classes of equipment		
T1	> 450 °C	T1 - T6		
T2	> 300 °C	T2 - T6		
T3	> 200 °C	T3 - T6		
T4	> 135 °C	T4 - T6		
T5	> 100 °C	T5 - T6		
T6	> 85 °C	T6		

3. SAFE OPERATING CONDITIONS

This manual contains main safety instructions for the installation, operation and maintenance. It must be read by the personnel who are responsible for installation and operation. This manual should always be kept near the installation location. It is important to comply with safety precautions stated in page 1 along with the general safety instructions as well as preventive measures repeated in other sections of this manual.

3.1. Training of Personnel

Installation, operation and maintenance personnel must have necessary knowledge in order to accomplish the given job. The responsibility, adequacies and controlling duties of such personnel must be determined by the costumer. It has to be certain that these personnel comprehend totally the content of the operating manual.

If the personnel do not have enough knowledge, required training must be given by the costumer. If training support is needed by the costumer, it will be provided by the manufacturer/seller.

CAUTION

Untrained personnel and unwillingness to comply with safety instructions may be risky for both machine and environment.MAS DAF MAKINA SANAYI A.S. is not responsible for this kind of damages.

Comply with EN 60079-19 and EN ISO 80079 about the repair, overhaul, reclamation and modification of equipment designed for use in explosive atmospheres.

3.2. Hazardous Conditions That May Occur When One does not Comply With the Safety Instructions

Incompliance with safety regulations may put the personnel, the environment and the machine in danger and thus may cause damages. Incompliance with safety regulations may give rise to situations listed below.

Important operational functions of the factory may stop.

Maintenance may get difficult.

One may get injured by electrical, mechanical or chemical hazards.

3.3. Safety Measures for Operator

Dangerous, hot or cold components in the pump area must be covered so that one cannot touch them.

Moving components of the pump (such as coupling) must be covered so that one cannot touch them. Those covers must not be dismounted while the pump is running. Dangers that results from electrical connections must be removed. To get more information about this subject, you can refer to domestic electrical instructions.

3.4. Safety Measures for Maintenance and Installation

The costumer must assure that all maintenance, check and installment tasks are performed by qualified personnel. Repair work must only be performed while the machine is not running.

The pump and its auxiliary system must be cleaned thoroughly if it contains hazardous liquids. At the end of the repair work, all safety and protective equipment must be re-installed.

3.5. Informations about Protection against Explosion

The instructions specified intended for protection against explosion should be noted definitely during commissioning of the pump unit in environ-

ments with explosion risk.

Only pumps or pump units having related definitions and adequate suitability must be used in environments with explosion risk. The explosion protection should be noted that it is possible only with the use according to the instructions.

Limit values specified at the ATEX version pump label must not be exceeded definitely..

NOTE: If the categories are different depending on pump and motor temperatures it applies the lowest category.

Ensure that the coupling used for accouplement of motor and pump has ATEX sign.

Avoid all improper commissioning and installation in environments with explosion risk. Otherwise, the pump unit and/or the staff can be exposed to damage/injury. Consider the local explosion protection regulations and the informations at ATEX version pump label.

Check whether ATEX specification on the motor and the pump coincide with specified categories. Consider that If the categories of the pump and the motor are different it applies the lowest category.

3.6. Spare Parts Replacement

Replacement of spare parts and all modifications must be done after contacting with the manufac-

turer. Spare parts and accessories certified by the manufacturer are important for the safe operation of the system.

Notice: MAS DAF MAKINA SANAYI A.Ş. is not responsible from the usage of improper spare parts.

FLUIDS	ELASTOMER T<100°	ELASTOMER T>100°	PRES- SURE
ALCOHOLS	NBR	-	
INDUSTRIAL OILS	NBR / VITON	VITON	
ETHYLENE GLYCOL	VITON	VITON	
ACID AT CONCENTRATION 50%	KALREZ	KALREZ	
GAS OIL	VITON GRAPHITE / SBR	VITON GRAPHITE	
HEAT TRANSFER OIL	NBR / VITON	VITON	16 Bar
LUBRICATING OIL	NBR / VITON	VITON	
SEA WATER (CLEAN7	VITON	VITON	
SLUDGE	NBR	VITON	
SEWAGE SLUDGE (DIGESTED)	VITON	VITON	
VEGETABLE OILS	NBR / VITON	VITON	
WATER	NBR	VITON	

Table 1: Table of Liquid, Temperature, Elastomer

4. TECHNICAL INFORMATION

4.1. Design

These are single stage, single suction with a horizontal opening and a vertical discharge opening volute type (with horizontal shaft) pumps. They have closed radial impellers in accordance to EN 22858 and casing sizes in accordance to DN 2858. Single entry and closed impellers have balancing holes and wearing rings against the axial loads and they are dynamically balanced.

4.1.1. Volute Casing

The axis of suction opening is horizontal while the

axis of discharge opening is vertical and the pumps have volute type casings. Suction and discharge flanges are in accordance to DN 2858 and EN 22858 standard.

4.1.2. Locations of Flange - Flanges

Suction Flanges: In axial direction DN50-DN300

Discharge Flange: Radially upward

DN32-DN250

Discharge Flange: DIN 2858-PN 16 Suction Flanges: DIN 2858-PN 16

4.1.3. Auxiliary Fittings

Auxiliary fittings can be used to cool, quench and wash the seal or to drain, also measuring devices can be connected for control of operating conditions

4.1.4. Impeller

The impellers of NME series pumps are fully radial, double-pitcher (Francis type) or mixed flow type. They are dinamically balanced by electronic balancing machine. Axial thrust is balanced with wearing ring and balancing holes.

415 Shaft

The pumps are provided with the rigid shaft capable of supporting different loading conditions. Since the shaft diameter is highly resistant to bending and the distance between the bearing and the sealing is short, pump can operate at optimal conditions for the sealing.

4.1.6. Bearing and Lubrication

Rolling bearings are used in norm centrifugal pumps. In pumps complying with DIN 24255, the bearing is provided with 7300 and NJ 300 type bearings which are lubricated with oil according to DIN 625 standard.

In our standard production, pumps with oil-lubricated bearings are shipped without oil inside. Before starting the pump, the oil level must be checked from the oil indicator. If the oil level cannot

be seen from the indicator, add oil from the filling plug on the bearing housing. It should be ensured that the oil used is high quality, has a high operating temperature range and high oxidation resistance. For example, Shell Tellus T46 or equivalent oil is recommended.

In grease-lubricated pumps, a small amount of grease should be pressed from the plug on the bearing covers before the first start-up so that the grease does not reach to the point of leakage. Pressing too much grease will cause an increase in the bearing temperature. It should be ensured that the grease used is high quality, has a high operating temperature range and high oxidation resistance. For example, Shell Alvania RT3, Castrol Pyroplex Blue NLGI2 or equivalent grease is recommended.

4.1.7. Seals

In standard production, John Crane mechanical seals are used for sealing (it is suitable up to 260 °C).

4.1.8. Heating/Cooling Jackets

Thanks to front and rear jackets, working fluid temperature is protected and necessary heating and cooling operations are implemented. Problems as freezing or clogging that are based on viscosity changes are minimized during pumping process.

4.1.9. Inducer

By usage of inducer, cavitation risk is minimized.

4.2. Construction of Pump Group

4.2.1. Drive

TEFC (Totally Enclosed Fan Cooled) 3 phase, squirrel caged, in accordance to DIN 42673, IM 1001B3 type electrical motor which complies with DIN IEC and VDE is used to drive the pump in proper speed and power.

Specifications of electrical motor;

Isolation class : F

Protection class : IP 54-IP 55

Frequency : 50 Hz

Running type : S1

Start up type : Up to 4 kW, 3x380V (Y)

More than 4 kW,3x380V (Δ)+(Y/ Δ)

4.2.2. Coupling and Coupling Guard

At NME type pumps, a spacer coupling is used. A coupling guard is given in accordance with EN 953.

Pump can only be run with a couplingguard in accordance with EN 953 according to safety instructions. If there is no coupling cover, it is provided by the operator.

4.2.3. Base Plate

It is manufactured from U profile steel in accordance with DIN 24259.

5. TRANSPORT AND STORAGE

Suction, discharge and all auxiliary fittings must be closed during transport and storage. Dead-end covers must be removed while the pump unit is being installed.

5.1. Transport

Pump and pump group must be carried safely to the installation location by lifting equipments.

CAUTION

Current general lifting safety instructions must be applied. Please use a suspension system shown in figure while you are carrying and lifting the pump unit. The suspension rings may be broken because of the excessive load and may result in adamage of the pump. Prefer fabric cable for suspension.

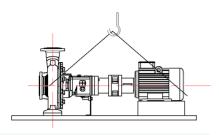


Figure1: Transport of Pump Group

Incorrect lifting may damage the pump unit and cause injuries.

Damages caused in transport

Check the pump when it is delivered to you. Please let us know of there is any damage.

5.2. Storage

Please keep the unit clean, dry and closed area during storage.

If the pump is out of use for a long time, please consider the instructions below.

- 1. If there is water inside the pump, drain it.
- 2. Clean the pump casing and impeller by jetting clean water for a short time.
- 3. Empty water inside the pump casing, suction line and discharge line.
- Add small amount of antifreeze inside the pump casing if it is not possible to empty it completely. Rotate the pump shaft by hand to mix the antifreeze.
- Close the suction and discharge exits with gasket
- 6. Spray an anti-corrosive into the pump casing.

 Rotate the pump shaft by hand once in every month, in order to protect it from freezing and to lubricate the bearings.

6 ASSEMBLY / INSTALLATION

6.1 Installation

In our standard production, the pump and the motor have been installed in a common base plate.

611 Location of Installation

Pump shall be installed in a location where the control and the maintenance of the pump are easily made. The pump room shall be suitable for operation of lifting systems such as freight elevator, forklift, etc.

The pump group should be installed in the lowest possible location of the pumping system in order to achieve the highest suction pressure.

6.1.2. Location of Installation- Local Ambient Temperature

When the local ambient room temperature exceeds +40oC in a pumping system, suitable ventilation should be provided in order to remove the heat dissipated to the environment and supply fresh air.

6.2. Type of Connection

Type of connection depends on the design type and the size of the pump and the motor, as well as the local installation conditions. Foot-mounted horizontal pump-motor units have been installed in a common base plate.

6.3. Foundation

6.3.1. General

Base plate of the pump must be grouted. The foundation shall be of concrete or steel framework.

NOTICE: The foundation shall distribute the weight of the pumping group evenly.

6.3.2. Main Properties of the Steel Framework Bases

Foundations with steel framework shall be designed in such a way that the base plate is bolted or welded contacting to all area.

CAUTION

If base plate is supported from only four points, pump group will stay in the middle, causing misalignment of the coupling and increasing the noise level.

6.3.3. Foundation Properties

The foundation shall be horizontal, flat and clean and shall support all the weight.

NOTICE: Reinforced concrete bases are constructed from standard concrete with at least B 25 resistance class.

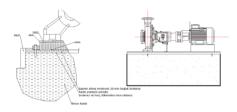


Figure 2: A Typical Concrete Foundation

After the alignment of the pump group on the foundation has been made, the mutual securing bolt screws should be used alternately to fix the pump group.

All of the area of the base plate should be filled with gout as much as possible.

NOTICE: While securing pump group with the mortar bonding agents and molding, one has to make sure that the base plate contacts completely with the base with no cavities between the surfaces. Inside of the chassis (frame) should be completely filled with concrete

6.4. Coupling Alignment

6.4.1. General

For a proper operation of a pump group, a good alignment of the coupling is necessary. Vibration, noise, overheating of the bearings, overchargeproblems can be attributed to the misalignment of coupling or using an improper coupling.

Flexible coupling does not correct the axial misalignments between the pump and the motor axes. However, it allows pinpointing the misalignments.

In order to avoid overheating, vibration, noise and wearing of the rolling bearings, alignment of the coupling has to be made properly and checked often.

Do not use a different coupling other than the original type installed on pumping group.

6.4.2. Method of Coupling Alignment

In order to make the alignment of the coupling, it is required to have at least two pieces of about 10 cm tall, smooth-edged metal parts (e.g. a steel ruler or a gauge stick) and one precision calipers. (Figure 3) (For more precision alignments, special apparatus can be used).

Coupling misalignments in general are of two kinds.

1. 1. Paralel Axis Misalignment (Figure 4-Figure 6)

In order to control parallel axis misalignment, a smooth edged gauge stick is pressed axially over the upper half of the coupling. Then, the gauge stick is checked for the other half of the coupling. For alignment, the gauge stick shall be in contact with both of the halves at the same time. This procedure shall be repeated for four sides of the coupling. (i.e. top, bottom, left and right sides of the coupling). When all four sides give reasonably accepted results, alignment of the coupling has been ensured.

2. Angular Misalignment (Figure 5-Figure 7)

In order to control the angular misalignment, the distance between the two halves of the coupling is measured in both horizontal and vertical planes.

Measurements taken at four points shall be in agreement for the alignment.

Misalignments can be in horizontal or vertical planes. Misalignments in horizontal plane can be fixed by placing sheet iron at the bottom of the pump or motor base, while misalignments in vertical plane can be fixed by sliding the pump or the motor in horizontal plane.

Figure3: The Control of the Coupling Alignment in Horizontal and Vertical Planes

Figures below illustrate the possible coupling misalignments and the methods to correct them.

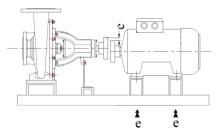


Figure 4: Paralel Axis Misalignment in Vertical Plane and Its Correction

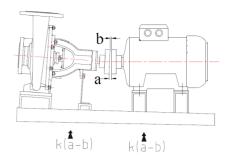


Figure 5: Angular Misalignment in Vertical Plane and Its Correction

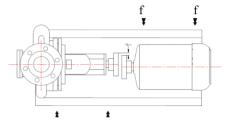
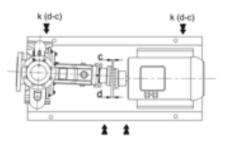
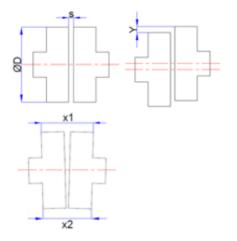



Figure 6: Parallel Axis Misalignment in Horizontal Plane and Its Correction

Figure 7: Angular Misalignment in Horizontal Plane and Its Correction

Install the coupling guard only when the alignment of the coupling is checked.

For centrifugal pumps, coupling alignment tolerances are critical to ensuring proper alignment. Coupling alignment tolerances can vary depending on a variety of factors, including coupling diameter, operating speeds, and the accuracy required by the application.


In general, coupling alignment tolerances are determined by the following parameters:

Axial Tolerance (Axis Misalignment): The amount of axial misalignment between the axes.

Angular Tolerance (Angular Alignment): The angular difference between two shafts.

Parallelism Tolerance (Lateral Alignment): The lateral misalignment of the centerlines of two shafts.

Recommended coupling alignment tolerances based on coupling diameter:

Coupling Diameter ØD (mm)	Axial Clearence S (mm)	Axial (mm)	Parallelis Y (mm)	Angularity X (mm/ 100mm)
69	3	0,05	0,05	0,05
78 - 96	4	0,1	0,1	0,1
106 - 200	5	0,2	0,2	0,2
224 - 400	6	0,2	0,2	0,2
450 - 550	8	0,25	0,25	0,25

6.4.3. Pump and Motor Mounting (Coupling)

If the coupling of the pump group is to be mounted on site, the following procedure should be followed

- Coat the shaft tip of the pump and the motor sides with a sheet of molybdenum disulfide.
- 2. Push the coupling halves with a driving apparatus towards the pump and the motor shafts, until the shaft is fit to snag to the hub of the coupling. If a driving apparatus is not available, heating coupling halves (with coupling rubbers off) to an approximately 100 °C may help the pushing. It is important that axial force is prevented from occurring while mounting the coupling. Support pump shaft from the impeller side, and motor shaft from the fan side while mounting the coupling. If necessary, dismantle the fan cover.
- 3. Screw the two bolts in coupling hub.
- Make sure that a suitable spacing is left between the coupling halves while mounting pump and the rotor.
- Horizontal pump groups mounted on the base plate or directly mounted on the base, alignment of the coupling shall be as described in 6.4.2.
- 6. Put into place the coupling guard.

According to the accident prevention regulations, all preventions and protective devices should be in their intended place and in operational form.

6.5. Piping

6.5.1. General

- Do not use the pump as the hinged support for the piping system.
- Put enough supports under the piping system in order to carry the weight of the pipe and fittings.
- Avoid piping system loads on pump by installing flexible components (compensator) to suction and discharge of the pump.
- By mounting flexible supporting items, take into consideration the fact that these items may elongate under the pressure.
- Suction pipe shall be in a constantly increasing slope to the pump. Air in the suction pipe shall be arranged to move into the pump
- Discharge piping shall be in a constantly increasing slope to the reservoir or discharge point, without up and downs which can cause air pockets in the piping system. At locations where forming of air pockets is possible, special items like air valve and air cock are mounted to evacuate the trapped air.
- It is important that pipe diameter and fittings are at least as much as the pump opening diameter or preferable one or two size higher. One should never use fittings with smaller diameters than the pump exit diameter. In particular, preferred fittings like foot valve, strainer, filter, check valves and valves shall have large free passing area, and low friction loss coefficient.
- For piping systems with hot liquids, thermal expansions are to be taken into account and compensators shall be mounted in accordance with these expansions. Caution shall be exercised to avoid the loading of pump in this installation.

6.5.2. Specification of Work in Piping Installation

In installation of pipes, follow the procedures below certainly.

- Install the pump on the concrete base as illustrated in Figure 2.
- Take out the guards (placed by the manufacturer) from suction and discharge openings of the pump.
- Close the suction and discharge flanges with rubber gaskets. This precaution is important to avoid the undesired substances (weld crust, weld slag, sand, stone, wood piece etc.) get into the pump. Do not take off this gasket until the installation is completed.
- Start the installation of piping from the pump side. Do the necessary assembling and welding of the parts in a successive order.
- In these operations, do not neglect to put the necessary supports in their respected locations.
- Following above procedure, complete all piping system at suction side up to the suction tank (or foot valve if available), at discharge side up to do discharge collector and discharge pipe.
- When all installation and welding process is done and the heat dissipated by welding is removed, dismantle all the bolted connections from the suction tank to discharge pipe. Take out all demountable parts.
- Clean these parts and then paint body coat completely inside and outside.
- Mount the parts again in their intended places.
 However, this time start from the discharge
 line and move downward to the pump. In this
 instance, do not forget to check the flange
 gaskets. If needed, (for example deformation
 during welding) replace them.
- Concerning the connection of the pump flanges to piping, in case of misalignment of axis

and flange holes, do not force the system to eliminate the misalignment. Forcing the system may cause difficult-to-correct problems.

- If there is an axial misalignment between the flanges of the pump and the pipe, due to the welding or any other reasons, cut the pipe from a suitable location in order to fix the problem. Connect the pipe (pump side) to the pump. After carrying out the necessary correction, connect the parts again by welding.
- Dismantle and clean the last welded part. Repaint again and mount on its place.
- After all these processes are accomplished, remove the rubber gasket from the suction and discharge openings. Open their holes and mount them again on their intended place.

6.6. Specification of Work after Installation of Piping and Piping System

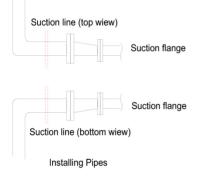


Figure 8: Piping System

An illustrative piping system is shown in Figure 18. Appropriate manometers shall be mounted on suction and discharge pipelines.

Complete the auxiliary pipe connections in piping system if exist (cooling to bearing housing, and stuffing box (seal), relief pipe, oil pipe etc.)

6.7. Motor Connection

Motor shall be connected by an electrical technician according to the connection (switch) diagram. Local electricity policies regulations have to be applied.

- Electrical connections have to be made by authorized electricians.
- In dismantling the pump, make sure the electricity is cut off before taking the motor cover out.
- Use the appropriate electrical connection to the motor.

In environments where there is a risk of explosion, prescribed protective law and regulations shall be applied by competent authorities.

Connection points of the cable ends must be away from environment with explosion risk or provide allowable conditions for II 2G device category.

Never operate pump units not connected electrical cable connections correctly.

6.7.1. Motor Connection Diagram

Motors requiring high moments at start up shall not be connected star-delta

Frequency controlled motors, require high moment at start up and have to be cooled properly at low speeds. Provide the necessary cooling for the motors.

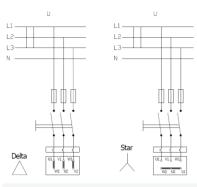


Figure 9: Electric Connection Diagram

Electrical Circuit	Motor		
U (Volt)	230/400 V	400 V	
3 x 230 V	Delta		
3 x 400 V	Star	Delta	

6.7.2. Motor Protection

- Three phased-motor shall be connected to power supply.
- Wait the motor to cool down when thermic protected motor breaks in circuit due to the overheating. Make sure the motor does not start automatically until it cools completely
- In order to protect the motor from overcharging and short circuit use a thermic or thermic-magnetic relay. Adjust this relay to the nominal current of the motor.

Electrical equipments, terminals and the components of the control systems may carry electric current even though they are not operating. They may cause deadly and serious injuries or irreparable material damages.

TABLE OF GROUNDING CABLE SECTION					
MOTOR PHASE EQUIPOTENTIAL CABLE SECTION					
N	NIN = 4mm2				
5 ≤ 16mm²	5				
16 < 5 ≤ 35	16				
35 < S	5/2				

Table 2: Table of Grounding Cable Section

7. COMMISSIONING, START UP AND OPERATING

7.1. Preparations Before Start Up

OIL CHECK: NME type pumps are provided with oil lubricated Rolling bearings. It is necessary to check the oillf the pump is run for the first time, the oil must be changed at the end of 200 hours of running time. The oil must be changed for the pumps having 2900 rpm. after 1500 hours running time, for the pumps having 1450 rpm. after 3000 hours running time.

SEAL CHECK: John Crane 1648 type mechanical seals used in NME type pumps must be never operated dry.

- Check pump seals.
- Make sure that the pump and the suction pipe is completely filled with water before the starting. If the pump operates on a positive suction head, no problem will be encountered. Suction valve is opened and air drains are un-tightened.
- Pumps with foot valve are filled with water by opening the pump filling tap or, one takes advantage of the water accumulated in the discharge pipe and by using a small valve the check valve is bypassed and the pump is filled.
- In vacuum pump driven pumps, by operating the vacuum pump one achieves to fill the pump via increasing the water level in the suction pipe.

COUTION

Do not start your pump dry (WITH OUT WATER)

7.2. Checking The Direction of Rotation

COUTION

- The direction of rotation is indicated on the pump label with an arrow. Apart from special cases, it is clockwise direction when looking from the motor end. Observe if the pump is rotating in the expected sense by starting the motor for a very short instant. If it is turning in the opposite sense, interchange any of two motor leads.
- If the motor connection is delta, open the discharge valve slowly.
- If the motor connection is star-delta, set the time relay to maximum 10 seconds. Monitor the passage from star to delta by pressing the start button. As soon as you are assured that the connection is delta, open the discharge valve slowly. Continue opening the valve until you read the amperage on the electrical panel
- One should always check the labels which show the direction of rotation and the direction of fluid flow. If you dismount the coupling protection to monitor the direction of rotation, do not restart the engine before remounting the protection.

As a result of getting in touch with rotating and stable parts each other temperature increase can occur. Never check the direction of rotation while the pump is dry.

7.3. Start up Procedure

 Check if the suction valve is open and the discharge valve is closed. Start the motor

- Wait until the motor reaches sufficient speed. (In Star-delta connections, wait until the engine passes to delta connection.)
- Keeping an eye on the amperage shown on the panel, open the discharge valve slowly.
- In the primary operation, if the discharge pipe is empty, do not open the valve completely. By keeping an eye on the amperage, open the valve with care regarding that it should not exceed the value indicated on pump's label.
- After opening the valve completely, check the pressure from the pump exit manometer and make sure that this value is the pump operating pressure value and is indicated on pump's label.
- If the value one reads is less than the pump label value when the valve is completely open, it means that the height is miscalculated. Increase the value by narrowing the valve and bring it to pump's label value.
- If the value one reads is greater than the pump label value when the valve is completely open, it means that the height is calculated less than what it should be in reality. The device is pumping less than what is requested. Check the installation and the calculations.
- Minimum flow rate: If the pump is working with zero flow rates (closed valve) from time to time during its operation, the water inside the pump may endanger the pump by getting warmed up. In such cases, a minimum flow valve must be connected to the pump exit.

COUTION

Stop the motor if the pump gets too hot and if there is reduction in flow, noisy operating and if the bearing gets too hot. Wait until it gets cold. Then start the system up again carefully.

7.4. Down Shut Procedure

COUTION

During sudden start ups and stops, a pressure reducing valve must be placed at the exit section

of high flow rate pumps whose discharge pipelines are long, in order to reduce water hammer effect. Water hammer may explode the pump.

In normal conditions (apart from sudden power shut down, etc), stop the pump as below:

- · Close the discharge valve slowly
- Switch the power off, stop the motor. Notice that the rotor slows down
- If the mechanical seal is external-fed, close it to decrease pressure in the stuffing box.
- Do not start up the motor at least before 1 to 2 minutes.
- If the pump will be out of use for a long time, close the suction valve and auxiliary circuits. If the pump is outside and if there exists a danger of frost, remove all drain taps and empty all the water inside the pump. (5.2. Storage)

COUTION

If the pump is outside and if there exists a danger of frost, remove all drain taps and empty all the water inside the pump.

8. MAINTENANCE

COUTION

Maintenance operations must be done by authorized personnel with protective clothing only. The personnel must also beware of high temperatures and harmful and/or caustic liquids. Make sure that the personnel read carefully the manual

- The instructions in Safety Precautions must be executed during maintenance and repair
- Continuous monitoring and maintenance will increase the engine's and pump's lives.

The instructions below should be applied.

8.1. The Checks During the Operation

- · Pump must never be operated without water.
- Pump must not be operated for a long time with the discharge valve closed (zero capacity).
- Precautions must be taken against flare up when the component temperatures are over 60°C. "Hot Surface" warnings must be placed over necessary areas.
- All the auxiliary systems must be in use while the pump is operating.
- If the pump has mechanical sealing, there is no need for excessive maintenance. Water leakage from the mechanical sealing indicates the fact that the sealing is worn out and therefore needs to be replaced.
- If the system consists of a substitute pump, keep it ready by operating it once a week. Check also the auxiliary systems of the substitute pump.
- If the ambient temperature is about 30 °C bearing temperature must not exceed 80 °C.
- Check the elastic parts of the coupling periodically. Replace them if necessary.
- In oil and grease lubricated pumps, be sure to comply with the oil addition or change periods.
 Oil addition or change periods should be determined by the managements since they will vary depending on the operating conditions and operating times of the pumps in the plants. Never mix different types of oils.

Occuring explosive ambient inside of the pump must be prevent. The air of the pump and suction line must be drained before commissioning of the pump. The interior of the pump contacting with pumped liquid including gasket way and auxiliary systems must be filled with pumped liquid.

- Ensure that delivery pressure is enough.
- Exceeded the allowable using limits regarding

pressure, temperature, transportating material and motor speed may cause explosion risk, hot and poison liquidmay leak to external environment.

 Do not operate the pump at values above pressure, temperature or motor speed values specified by manufacturer; never use improper liquids with the pump.

8.1.1. Component Check

COUTION

To make possible the visual control, one must be able to reach the pump from any direction. Especially, to be able to dismount the internal units of the pump and the engine, sufficient free space must be created around them for maintenance and repair. Furthermore, one must make sure that the piping system can easily be dismounted.

8.1.2. Bearing and Lubrication

In NME type pumps, oil-lubricated 7300 type angular contact bearings and NU 300 type cylindrical roller bearings are used. They are lubricated with oil.

8.1.3. Shaft Seal Maintenance

8.1.3.1. Mechanical Seal

Mechanical Seals are absolutely leak tight and needs less maintenance than soft packing.

Generally, if a leak does not occur visibly, mechanical seals are carefree. Nevertheless tightness of them must be checked periodically. Follow the instructions of the mechanical seal manufacturer.

Mechanical Seal:

- Provides leak proof operation in heavy operating conditions (in waste water pumps, chemical process and refinery pumps).
- Easily mountable and needs less maintenance.
- 3. Does not cause wearing on the shaft
- Sealing operation does not depend on the quality of shaft finishing.

8.1.4. Coupling

As mentioned in Section 6.4, coupling adjustment must be checked regularly.

Worn out elastic bands must be replaced.

8.1.5. Drive

Apply to the operating instructions of the motor manufacturer.

8.1.6. Auxiliary Components

Check regularly the fittings and the gaskets, replace the worn-out pieces.

8.2. Maintenance Instructions in ATEX Version Pumps

- Consider the local safety instructions and ATEX version pump label specifications.
- During maintenance or repair by taking sparking into consideration, maintain or repair in environments where there is no a possibility of ignition.
- As a result of maintaining deficiently and / or faultily the pump may be damaged and explosion risk may occur. Maintain the pump or the pump unit regularly.
- Carry out maintenance the shaft sealing components properly and regularly. Hot or toxic pumped liquid may leak from the sealing components not maintained regularly. In this case, the damage to the pump, fire and explosion hazards are the likely consequences.
- Fire or explosion hazards may occur as a result of overheating in bearing housings or faulty bearing housing gaskets. Because of that, check the level of lubrication element and periods of lubrication regularly. Check the sounds come from the bearings during the running regularly.

8.3. Service

Our After Sales Services Department provides service support. Manager should employ authorized and trained personnel for mounting/dismounting procedures. Before these procedures, one must make sure that pump interior is clean and empty.

This criterion is also valid for the pumps which are sent to our factory or to our service points.

Maintain the safety of the personnel and the environment in every field procedure.

8.4.Spare Parts

The spare parts of NME type pumps are guaranteed for 10 years by MAS DAF MAKINA SANAYI A.S.

In your spare parts requests, please indicate the below listed values that are indicated on your pump's label.

Pump type and size:

Motor power and speed:

Pump serial number:

Capacity and head:

If you wish to keep spare parts in store, depending on the number of same type of pumps, for two operation years, the quantities which are listed in the table below are recommended.

Component Name	The Number of Equivalent Pumps in the Installation							
	1-2	3	4	5	6-7	8-9	10+	
Shaft (Wedge included) (quantity)	1	1	2	2	2	3	%30	
Impeller (quantity)	1	1	1	2	2	3	%30	
Ball bearing (kit)	1	1	2	2	3	4	%50	
O-Ring for casting (Kit+1)	1	1	1	2	2	3	%40	
O-Ring for casting (if exist) (Kit+1)	1	1	2	2	3	4	%50	
Mechanical Seal (kit)	2	2	2	3	3	4	%50	
Sealing bush (if exist)	1	1	1	2	2	3	%30	
Coupling rubber sleeves (kit)	1	2	2	3	3	4	%50	

Table 3: Spare Part List

9. NOISE LEVEL AND VIBRATION

The reasons which increase the noise level are indicated below:

- Touch of coupling halves due to worn rubber sleeves (incorrectly aligned)
- Noise level increases due to the fact that the pump is not founded properly (Vibration)
- If the installation does not have compensator noise and vibration increases.
- Wearing in ball bearing also increases noise level

Check if there is any noise increasing elements in your installation.

9.1. Expected Noise Values

Measurement conditions:

· The distance between the measure point and the

pump : 1m

Operation : Without CavitationMotor : IEC Standard Motor

· Tolerance : ±3 dB

Power of Motor	Sound Pressure Level (dB)*							
PN	Pumpwith Motor							
(kW)	1450 rpm/min	2900 rpm/min						
<0,55	63	64						
0,75	63	67						
1,1	65	67						
1,5	66	70						
2,2	68	71						
3	70	74						
4	71	75						
5,5	72	83						
7,5	73	83						
11	74	84						
15	75	85						
18,5	76	85						
22	77	85						
30	80	93						
37	80	93						
45	80	93						
55	82	95						
75	83	95						
90	85	95						

Table 4: Sound Pressure Level

(*) Without protective sound hood, measured at a distance of 1 m directly above the driven pump, in a freespace above a sound reflecting surface.

The above values are maximum values. The surface noise pressure level at dB(A) unit is shown as (LpA). This complies with TS EN ISO 20361.

10. DISASSEMBLY, REPAIRAND REASSEMBLY

Before startingwork on thepump set, make sure it is disconnectedfromthemainsand can not be switched on accidentally. Fallow the safety precautions out lined in "Safetyinstructions". Wait until pump casing gets cold up to ambient temperatu-

re. Dangerous materials must be filled and collected safely and unihilated properly. If there is piping line connection, it must be removed. Manometers, its lines or retaining equipments must be disconnected. Support foot and safety equipments must be disconnected.

10.1. Disassembly

- Close all valves in the suction and discharge lines, drain the pump by the drain plug (260).
- Drain oil from the bearing hosing (30) if the pump isoil lubricated.
- Remove coupling guard and other safety guards
- If a Spacer Type Coupling is used between the pumpand the motor, there is no need to disconnect the motor from the Baseplate. To take out the Spacer Part isenough.

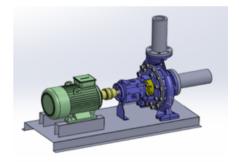


Figure 10: Disassembly - 1

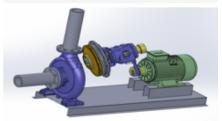


Figure 11: Disassembly -2

- Thanks to "Back Pull Out Design"; the impeller, shaftand other rotating parts being removable no need todisconnect the suction and delivery pipes.
- If to take out the complete pump is necessary, disconnect pump from the driver, suction anddischarge pipes and detach the baseplate.

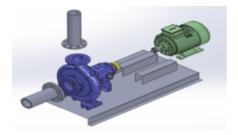


Figure 12: Disassembly -3

- Disconnect the casing nuts (360) and take out the pump rotor assembly (Impeller + Shaft + Bearing Housing + Bearings + Bearing Covers + Stuffingbox etc.)
- Take out the pump coupling half from the shaft (60) using a pull-off device and remove the couplingkey (211).
- Unscrew the impeller end nut (65) and take out theimpeller (20) and impeller key (210).
 Use rust remover solvent during dismountling if necessary.
- Unscrew the nuts (360) bearing housing to the stuffing box.

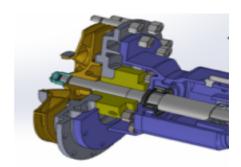


Figure 13: Disassembly -4

- If there is the mechanical seal, unscrew the seal cover (55). Separate the stuffing box from the bearings. Mechanical seal will remain on the shaft.
- · Dismantle the bearing covers (35)
- Dismantle bearing by using a pull-off device.
 Donot use metal hammer for this operation.

10.2.Reassembly

- Reassembly proceeds in reverse sequence to disassembly as described in section 10.1. You may find the attached drawings useful.
- Coat the seats and screw connections with graphite, silicon or similar slippery substance before reassembly. If you can not find any of the above you may use oil instead (except the pumps for drinking water).
- Never use the old gaskets, make sure the new gaskets and o-rings are the same size as the old ones
- Start mounting from the bearings. Place ball bearings on their places on the shaft by slightly heating or by using press.
- Wait until bearings get cool. (Cool if it is possible). Put this part to the bearing housing from the coupling side. (With pressor plastichummer)
- · Reassembly the bearing cover on its place.
- · On pumps with mechanical seal is used; put

the stationary part of mechanical seal in its place on the seal cover (58-59). Then put this part on the shaft. Afterwards put the rotating part of mechanical seal on its position.

- On pumps with packing is used; put the stuffing box gland in position. And fixed the gland nuts gently.
- Mount stuffing box (03) to bearing housing (30).
- At this stage you can insert the stuffing box and irrigation ring.
- Replace impeller key and pump impellers. Tighten the impeller nuts.
- · Replace the coupling and coupling key.
- On pumps with mechanical seal is used, tightenmechanical seal cover; on pumps with packing is used, tighten the glen nut.
- Now reassembly of the rotor group is completed.
- Finally mount rotor assembly to the volute casing. (In the repair shop or on site.)
- Make sure the gaskets and o-rings are evenly placed without sliding and not damaged or not squeezed at all.
- Place the pump on the base plate, couple the motor. Connect suction and discharge pipes as well as auxiliary pipes. Take the unit into operation as it was indicated in section 7.

Check whether the faces contacting with another faces are damaged for avoiding explosion before reassembling of the motor. The parts having deformed faces must be replaced. Ensure that the rotating parts are fitted with the guards.

10.3. Coupling Guard Assembly

Figure 14: Coupling Guard Assembly - 1

Mount (1) numbered part to bearings mounted on the pump.

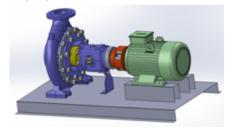


Figure 15: Coupling Guard Assembly - 2

Connect motor and pump with coupling.

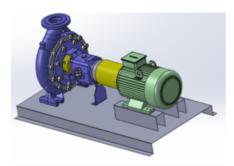


Figure 16: Coupling Guard Assembly - 3

Place the coupling guard.

11 MECHANICAL SEAL INFORMATIONS

In NME type chemical process pumps, John Crane 1648 type mechanical seals are used.

1	Seal	8	Spring Retaining Ring	15	Bolt
2	O-Ring	9	Set Screw	16	Stuffing Box
3	Front Ring	10	Bushing	17	O-Ring
4	0-Ring	11	O-Ring	18	Bushing
5	Retai- ner	12	Sleeve (muff)	19	Spring
6	Spring	13	Set Screw	20	Gland
7	Disc	14	Spacer	21	0-Ring

Table 5: Parts of The Mechanical Seal

11.1. Safety Instructions

- All executions related to mechanical seals mounted, dismounted and maintained must be made by qualified staff reading and understanding this manual.
- Mechanical seals are designed to provide sealing on rotating shafts. In case of misusage

- them, the manufacturer does not accept responsibility.
- Seals must be used in proper conditions and within the recommended performance limits.
- If pumped liquid is dangerous or toxic, necessary measures should be taken against the possibility of leaks.

11.2. Mechanical Seal Working Conditions

Following situations specify operating limits for 48 type mechanical seals. Liquid characteristics are taken into account to determine thermal endurance and chemical resistance of materials of mechanical seal.

Working Temperature Range: -40 °C- +260 °C Working Pressure Range: -1 – +69 bar Speed Range: Maximum 25,4 m/s

11.3. General Instructions

- Before mounting the mechanical seal please make sure that all instructions are read.
- · John Crane mechanical seals are used as cartridge type to provide easy assembly processes.

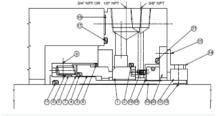


Figure 17: 1648 Type Seal Arrangement Example

11.4. Assembly

Before start assembly process read the stated instructions carefully.

- Take out seal from package. To ensure that mechanical seal is not impacted control the surfaces.
- Equipment must be clean. Check sleeve and secondary seal component if necessary use lubricant product.

- Seal cartridge structure contains 2 or 4 spacer that adjust working height of the seal. When seal is placed onto shaft, spacer at bottom may not be accessible at some equipments. Remove the spacer under that conditions.
- Check that the drive clolar set screws are engaged in the sleeve holes without touching the shaft. Position the gland plate so the flush connection, marked "F" is at or near top dead center.
- · Make all necessary impeller adjustments.

11.5. After Starting-Up

- · Ensure that the pump is electrically isolated.
- Ensure that the pump is isolated by the appropriate valves. Check that the fluid is drained and pressure is fully released.

11.6. Disassembly

Reinstall or rotate the spacer back into place over the collar and retighten the cap screws. Loosen the set screws in the collar. The set screws that engage the spacer need only be flush with the top of the spacer. The remaining set screws should be loosened just enough so they still engage the sleeve drill through holes. Evenly slacken and remove the gland plate nuts and carefully slide the plate off the studs. Remove the pump casing/seal chamber and the abutment or spacer when fitted, and then complete the removal of the seal cartridge in the reverse order of installation.

11.7. Storage and Transport

Mechanical seal assemblies and component parts must be treated with extreme care to protect them from damage due to handling and deterioration. In all cases if established company procedures differ from the instructions provided in this document, the established procedures shall be followed.

1. Storage

- a) John Crane mechanical seals and components are packaged to protect them from airborne dirt and grit, as well as from mishandling. If the packaging is removed for inspection, it should be replaced. Seals are generally packaged dry. Elastomer shelf life can be a factor if the storage period is in excess of 2 years.
- b) If storage is in excess of 1 year, it is recommended that the primary and mating rings be inspected for flatness prior to installing the seals into the pump.

2. Storage of Single Seals in Pumps

- a) If the mechanical seal is to be stored in the equipment, the seal cavity shall be drained of all water to prevent damage due to freezing temperature.
- b) Any foreign matter should be removed as soon as possible after delivery of the pump on site. The open area between the gland plate and sleeve must be masked to exclude dirt after cleaning.
- c) Cover pump suction and discharge flanges to exclude airborne debris.
- d) All open ports in the gland plate and seal chamber must be plugged with metal plugs
- e) Mark and rotate the shaft several revolutions weekly. Leave the shaft 90° from the previous position.
- f) Seals in storage for more than 2 years should be disassembled to allow inspection of the primary and mating ring faces.

11.8. Maintenance

No maintenance of a seal is possible while installed. Therefore, it is recommended that a spare seal unit and mating ring be held in stock to allow immediate replacement of a removed seal.

12. POSSIBLE FAILURES, CAUSES, SOLUTIONS

Possible failures and solution strategies are listed in the table below. Please apply to the Customers' Service Department of our company when a generic solution is not found to your problem.

While the failures are repaired the pump must always be dry and un-pressurized.

POSSIBLE FAILURE	CAUSES	SOLUTIONS
The pump delivers insufficient capacity	Discharge head too high Very high counter pressure Pump and/or pipe cannot discharge air, cannot suck Occurrence of air pockets inside the pipe NPSH is too low	Readjust the operating point See if there is any undesired material inside the pipe Vent completely the pump and the pipe Change the piping configuration Increase the liquid level
Motor overload	System pressure is lower than the requested pressure level Speed too high Liquid pumped of different specific gravity and viscosity than that for which pump is rated Engine works at two phases	Adjust the operating pressure to the labet value Decrease the speed Increase the engine power Replace the fuse and control the electrical connections
Pump head is too high	· System pressure is higher than the requested pressure level	· Set the operating pressure to the label value
Bearing temperatures are high	Worn out coupling Too much, too little or improper lubrication Increase in axial forcing	Replace the coupling Change the oil, decrease or increase its quantity Clean the balance holes on the impeller disc
Excessive leakage from the stuffing box	· Worn out gland · Loose gland	Use brand new gland Change the stuffing bush Tighten the gland nuts.
Noisy operation	Worn out motor or pump ball bearings Cavitation Worn out or misaligned coupling Operation in the far left or right of the performance curve	Replace Close the delivery partially in order to reduce the capacity. Replace the coupling or align it Operate the pump at its label setting
Excessive increase in pump temperature	Pump and/or pipe can neither discharge, nor aspirate air Too low capacity	Bleed completely the pump and the pipe Open more the valve
Vibration	Pump and/or pipe can neither discharge, nor aspirate air NPSH is too low Internal components of the pump are worn out System pressure is lower than the requested pressure level Coupling is misaligned Too much, too little or improper lubrication Rotor unbalanced Improper bearings	Bleed completely the pump and the pipe Increase the liquid level Replace the worn out components Adjust the operating pressure to the label value Align the coupling In case of continuous overload, decrease the impeller diameter Change the oil, decrease or increase its quantity Balance the impeller again Use new bearings

13. TIGHTENING TORQUES

THREAD	TIGHTENING TORQUE MAX (Nm)				
DIAMETER	Property	/ Classes			
DIAMETER	8.8	10.9			
M4	3.0	4.4			
M5	5.9	8.7			
M6	10	15			
M8	25	36			
M10	49	72			
M12	85	125			
M14	135	200			
M16	210	310			
M18	300	430			
M20	425	610			
M22	580	820			
M24	730	1050			
M27	1100	1550			
M30	1450	2100			
M33	1970	2770			
M36	2530	3560			

Table 8: Tightening Torques Table

14. FORCES AND MOMENTS AT THE PUMP FLANGES

All of the applied load sif not reached the maximum allowable value, to provide that the following additional conditions, one of these loads may exceed the normal limit:

- · Any component of a force or a moment, must be limited1.4times of the maximum allowable value,
- · The actual force sand moments acting on each flange, should provide the following formula:

$$\left(\frac{\sum |F|_{\text{actual}}}{\sum |F|_{\text{maximum allowable}}}\right)^2 + \left(\frac{\sum |M|_{\text{actual}}}{\sum |M|_{\text{maximum allowable}}}\right)^2 \leq 2$$

In here, **\(\subseteq \su**

				FOR	CES						MOM	ENTS		
PUMP TYPE	DN FL	ANGE	SUCT	ION FL	ANGE	DISCH	ARGE F	LANGE	SUCT	ION FL	ANGE	DISCH	ARGE F	LANGE
rom riic	SS	DS		N			N			Nm			Nm	
NMC 22 160			Fy	Fz	Fx	Fy	Fz	Fx	Му	Mz	Mx	My	Mz	Mx
NME 32-160 NME 32-200 NME 32-250	50	32	500	450	550	283	350	300	333	383	467	250	283	367
NME 40-200 NME40-250	65	40	617	567	700	333	417	367	367	400	500	300	350	433
NME 50-160 NME 50-200 NME50-250 NME50-315	65	50	617	567	700	450	550	500	367	400	500	333	383	467
NME 65-160 NME 65-200 NME 65-250 NME 65-315 NME 65-400	80	65	750	683	833	567	700	617	383	433	533	367	400	500
NME 80-160 NME 80-200 NME 80-250 NME 80-315 NME 80-400	100	80	1000	900	1117	683	833	750	383	433	533	383	433	533
NME 100-200 NME100-250 NME100-315 NME100-400	125	100	1183	1067	1317	900	1117	1000	417	483	583	417	483	583
NME125-200 NME125-250 NME125-315 NME125-400	150	125	1500	1350	1667	1067	1317	1183	500	633	700	500	633	700
NME150-250 NME150-315 NME150-400 NME150-500	200	150	2286	1800	2233	1350	1667	1500	583	683	833	583	683	833
NME200-400 NME200-500	250	200	2483	2250	2783	2057	2552	2286	876	1010	1238	876	1010	1238
NME250-500	300	250	3410	3067	3810	2571	3181	2838	1200	1391	1695	1200	1391	1695

Table 9: Forces and Moments at the Pump Flanges

Forces at the pump flanges were calculated according toTS EN ISO 5199 standard. The calculations are valid for the materials of cast iron and bronze. Forces and moments at the flanges that made of stainless material will be approximately twice as moments in the table.

15. SAMPLE PLUMBING

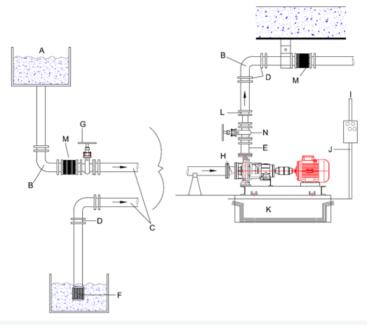


Figure 18: Sample Plumbing

- A. Tank
- **B.** Long radius elbow
- **C.** Minimum slope is 2 cm/m
- D. Fittings, flanges etc.
- E. Non-return valve
- F. Foot valve
- **G.** Suction valve
- H. Reducer
- i. Discharge valve
- J. Electrical connection
- **K.** Insulated cable
- L. Concrete foundation
- M. Compensator

16. NME SECTIONAL DRAWING AND PARTS LIST

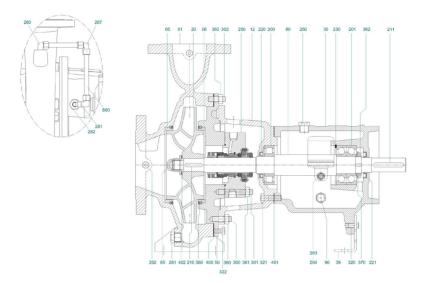
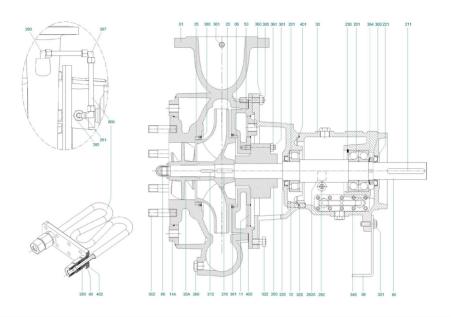
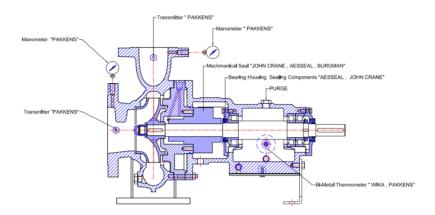


Figure 19: Design with mechanical seal

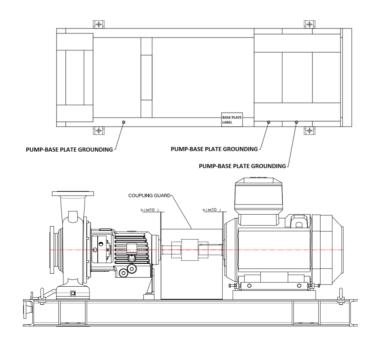
PART NO	PART NAME	PART NO	PART NAME	PART NO	PART NAME
1	Volume Casing	220	Oil Seal	302	Stud (Adapter)
5	Front Wearing Ring	221	Oil Seal	320	Hexagonal Bolt
6	Rear Wearing Ring	230	Segment	321	Hexagonal Bolt
12	Adapter	250	Mechanical Seal	322	Retention Knob
20	Impeller	260	Blind Plug	360	Nut (Casing)
30	Bearing Housing	261	Blind Plug	361	Nut (Adapter)
39	Supporting Part	262	Blind Plug	362	Safety Nut
50	Stuffing Box	263	Oiler Steel Housing	363	Nut
60	Pump Shaft	264	Oiler	370	Security Shield
65	Impeller Nut	267	Union Elbow	380	Set-Screw
96	Oil Indicator	280	Union Nipple	400	Casing Gasket
200	Cylindrical Roller Bearing	281	Union Elbow	401	Bearing Housing Gasket
201	Angular Contact Bearing	282	Blind Plug 1/2 NPT 14	402	Fan Nut Gasket
210	Impeller Key	300	Stud (Casing)	800	Steel Pipe
211	Coupling Key	301	Stud (Mechanical Seal Cover)		

Table 10: NME Sectional Parts List




Figure 20: Centerline Mounted Design

PART NO	PART NAME	PART NO	PART NAME	PART NO	PART NAME
1	Volute Casing	210	Impeller Key	300	Stud Bolt
5	Front Wearing Ring	211	Coupling Key	301	Stud Bolt
6	Rear Wearing Ring	212	Inducer Key	302	Stud Bolt
11	Steam Jacket (S.Box)	220	Oil Seal	320	Hexagonal Screw
11A	Steam Jacket (V.Casing)	221	Oil Seal	321	Hexagonal Screw
12	Adapter	230	Retaining Ring	322	Retention Bolt
20	Impeller	250	Mechanical Seal	340	Allen Screw
20A	Inducer	260	Plug	360	Nut
30	Bearing House	261	Oil Filling Plug	361	Nut
39	Bracket	262	Oil Indicator	363	Safety Nut
40	Cooling Plate	262A	Oiller	364	Retainer Ring
50	Stuffing Box	267	1/4 "Unian Elbow	380	Set Screw
60	Shaft	280	1/4 "Unian Nipple	381	Set Screw
65	Impeller Nut	281	1/4 "Unian Elbow	400	Flat Gasket
200	Cylindrical Roller Bearing	282	Blind Plug 1/2 NPT 14	401	O-Ring (Silicon)
201	Angular Ball Bearing	283	1/2 " Union Nipple	800	Steel Pipe


Table 11: NME (Centerline Mounted) Sectional Drawing Part List

17. BASE PLATE DETAILS

18. MECHANICAL SEAL APPLICATIONS

JOHN CRANE 0350/1648

· Single Application · API 682

· With Spring · Cartridge Type Design

Maximum Working Conditions

	_
р1	69 Bar
t	-40260 °C
Vg	25 m/s

Standard Materials

Equipment	316
Spring	Hasteloy Alloy
Front Ring	High Degree Carbon
Gasket	Silicon Carbide
Secondary Seal	Floroelastomer
Bushing	High Degree Carbon

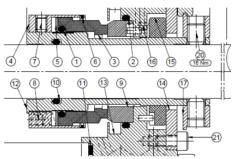
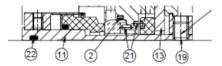


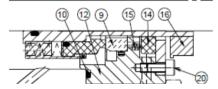
Figure 21: John Crane Mechanical Seal 0350/1648

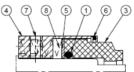
PART	PART NAME	PART	PART NAME	PART	PART I	NAME
NO	A,B,C Groups	NO	A,B,C Groups	NO	A,B,C G	roups
1	O-Ring	8	Spring	15	Floating	Bush
2	O-Ring	9	Bracket	16	Spri	ng
3	Face	10	0-Ring	17	Drive 0	Tollar
4	Retainer	11	Gasket	18	Spa	er
5	Thrust Ring	12	Sleeve	19	Hex Head	d Screw
6	Retainer Ring	13	Gland	20	Set So	rew
7	Set Screw	14	14 Auxilliary Gland		Hex Head	d Screw
Group		Pump	Ø d1	Ø d7	l1=l1k	
А	32-160,32-20	Ø 30	Ø 80	53		

JOHN CRANE 0400/1648

· Single Application · API 682


· With Spring · Cartridge Type Design


Maximum Working Conditions


р1	69 Bar
t	-40260 °C
Vg	25 m/s

Standard Materials

Equipment	316
Spring	C-276
Front Ring	High Degree Carbon
Gasket	Silicon Carbide
Secondary Seal	Floroelastomer
Bushing	High Degree Carbon

Şekil 22: John Crane Mechanical Seal 0400/1648

PART	PART NAME	PART	PART NAME	PART	PART NAME
NO	A,B,C Groups	NO	A,B,C Groups	NO	A,B,C Groups
1	O-Ring	8	Spring	15	Spring
2	O-Ring	9	Bracket	16	Drive Collar
3	Face	10	0-Ring	19	Set Screw
4	Retainer	11	Sleeve	20	Hex Head Screw
5	Thrust Ring	12	Gland	21	Pin
6	Retainer Ring	13	Auxiliary Gland	22	0-Ring
7	Set Screw	14	Floating Bush	23	Hex Head Screw

Group	Pump Type	Ø d1	Ø d7	l1=l1k
В	50-315, 80-200, 100-200, 100-315	Ø 40	Ø 90	41

JOHN CRANE 0500/1648

· Single Application · API 682

· With Spring · Cartridge Type Design

Maximum Working Conditions

	8
р1	69 Bar
t	-40260 °C
Vg	25 m/s

Standard Materials

Equipment	316
Spring	C-276
Front Ring	High Degree Carbon
Gasket	Silicon Carbide
Secondary Seal	Floroelastomer
Bushing	High Degree Carbon

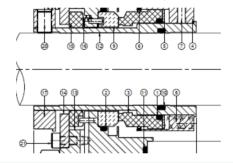


Figure 23: John Crane Mechanical Seal 0500/1648

PART	PART NAME	PART	PART NAME	PART	PART NAME
NO	A,B,C Groups	NO	A,B,C Groups	NO	A,B,C Groups
1	0-Ring	8	Spring	15	Floating Bush
2	0-Ring	9	Mating Ring	16	Spring
3	Front Ring	10	0-Ring	20	Set Screw
4	Retainer	11	0-Ring	21	Hex Head Screw
5	Thrust Ring	12	Sleeve		
6	Retainer Ring	13	Gland		
7	Set Screw	14	Auxilary Gland		

Gr	oup	Pump Type		Ø d7	l1=l1k
	C	80-400, 125-315, 125-400	Ø 50	Ø 100	43,6

19. NME DRAWING FOR DISMANTLING



Figure 24: NME Drawing For Dismantling

PART NO	PART NAME	PART NO	PART NAME	PART NO	PART NAME
1	Volute Casing	220	Oil Seal	302	Stud (Adapter)
5	Front Wearing Ring	221	Oil Seal	320	Hexagonal Bolt
6	Rear Wearing Ring	230	Segment	321	Hexagonal Bolt
12	Adapter	250	Mechanical Seal	322	Retention Knob
20	Impeller	260	Blind Plug	360	Nut (Casing)
30	Bearing Housing	261	Blind Plug	361	Nut (Adapter)
39	Supporting Part	262	Blind Plug	362	Safety Nut
50	Stuffing Box	263	Oiler Steel Housing	363	Nut
60	Pump Shaft	264	Oiler	370	Security Shield
65	Impeller Nut	267	Union Elbow	380	Set - Screw
96	Oil Indicator	280	Union Nipple	400	Casing Gasket
200	Cylindrical Roller Bearing	281	Union Elbow	401	Bearing Housing Gasket
201	Angular Contact Bearing	282	Blind Plug 1/2 NPT 14	402	Fan Nut Gasket
210	Impeller Key	300	Stud (Casing)	800	Steel Pipe
211	Coupling Key	301	Stud (Mechanical Seal Cover)		

Table 12: NME Drawing For Dismantling

NOTES	

NOTES

NOTES

NOTES

